Downloading...
 
product-image
 

2.7V~5.5V 입력, 4A MOSFET 내장 1ch 동기정류 강압 DC/DC 컨버터 - BD9A400MUV

BD9A400MUV는 저 ON 저항 파워 MOSFET를 내장한 동기정류 강압 스위칭 레귤레이터입니다. 최대 4A의 전류를 출력할 수 있습니다. SLLM™ 제어로 경부하 시의 효율 특성이 양호하여 대기전력을 억제하고자 하는 기기에 최적입니다. 발진 주파수가 1MHz로 고속이므로 소형 인덕턴스 사용이 가능합니다. 전류 모드 제어 DC/DC 컨버터이므로 고속 과도 응답 특성을 지니며, 위상보상 설정도 용이합니다.

評価ボードデータのダウンロード← 평가 보드 데이터 (레이아웃, Gerber, 회로 / 부품 데이터)는 이곳에서 다운로드

 

* 본 제품은 STANDARD GRADE 제품입니다. 이 제품은 차재 기기의 사용을 권장하지 않습니다.
형명
상태
패키지
포장 수량
최소 포장 단위
포장 사양
RoHS
BD9A400MUV-E2 개발중 VQFN016V3030 3000 3000 Taping Yes
 
사양 :
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 2.7
Vin1(Max.)[V] 5.5
Vout1(Min.)[V] 0.8
Vout1(Max.)[V] 3.85
Iout1(Max.)[A] 4.0
SW frequency(Max.)[MHz] 1.0
Light Load mode Yes
EN Yes
PGOOD Yes
Operating Temperature (Min.)[°C] -40
Operating Temperature (Max.)[°C] 85
특징 :
    • Synchronous Single DC/DC Converter.
    • SLLM™(Simple Light Load Mode)Control.
    • Over Current Protection.
    • Short Circuit Protection.
    • Thermal Shutdown Protection.
    • Under Voltage Lockout Protection.
    • Adjustable Soft start Function.
    • Power Good Output.
    • VQFN016V3030 Package(Backside Heat Dissipation)
 
 
관련 상품
관련 신제품 / 갱신 제품파워 매니지먼트
형명 제품 이름 패키지 Datasheet 유통 재고
BD9G102G-LB 6V to 42V, 0.5A 1ch Simple Buck Converter Integrated FET SSOP6   구입
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   구입
BD9S200MUF-C 2.7V to 5.5V Input, 2A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   구입
BD9S400MUF-C 2.7V to 5.5V Input, 4A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   구입
BD9F800MUX 4.5V to 28V Input, 8.0A Integrated MOSFET Single Synchronous Buck DC/DC Converter VQFN11X3535A   문의
BD9B333GWZ Single Synchronous Buck DC/DC Converter, 2.7V to 5.5V Input, 3.0A Integrated MOSFET UCSP35L1   문의
New Products:
 
 
기술 정보
Evaluation Board User's Guide

BD9A400MUV Evaluation Board User's Guide

Reference Circuits and Bomlist

Reference Circuits and Bomlist

Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.