Downloading...
 
product-image
 

2.7-5.5V 3A 1ch Buck converter - BD9139MUV

로옴의 고효율 강압 스위칭 레귤레이터 BD9139MUV 는 5V / 3.3V 이하의 전원 라인에서 0.8V 등의 저전압을 실현하는 전원입니다. 독자적인 pulse skip 제어 방식과 동기정류 회로에서 고효율화를 실현합니다. Current 모드 제어 방식을 채용하고 있어, 부하 급변에 대한 고속 과도 응답을 실현합니다.

* 본 제품은 STANDARD GRADE 제품입니다. 이 제품은 차재 기기의 사용을 권장하지 않습니다.
형명
상태
패키지
포장 수량
최소 포장 단위
포장 사양
RoHS
BD9139MUV-E2 공급중 VQFN016V3030 3000 3000 Taping Yes
 
사양 :
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 2.7
Vin1(Max.)[V] 5.5
Vout1(Min.)[V] 0.8
Vout1(Max.)[V] 3.3
Iout1(Max.)[A] 3.0
SW frequency(Max.)[MHz] 1.0
Light Load mode Yes
EN Yes
PGOOD No
Operating Temperature (Min.)[°C] -40
Operating Temperature (Max.)[°C] 105
특징 :
  • ・1ch 스위칭 레귤레이터
    ・Current 모드 PWM 제어 방식으로 고속 과도 응답 실현
    ・동기정류 내장 (Pch / Nch FET), SLLM™(Simple Light Load Mode) 로 전 부하 영역 고효율
    ・입력전압 : 2.7V to 5.5V
    ・출력전류 : 최대 3A
    ・스위칭 주파수 : 1MHz 고정
    ・소프트 스타트 기능 내장
    ・ TSD / UVLO / 타이머 latch 식 쇼트 보호 기능 내장
    ・셧다운 기능 내장 Icc = 0㎂ (Typ.)
 
 
관련 상품
관련 신제품 / 갱신 제품파워 매니지먼트
형명 제품 이름 패키지 Datasheet 유통 재고
BD9S300MUF-C 2.7V to 5.5V Input, 3A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   문의
BD9E104FJ 7.0 V to 26.0 V Input, 1 A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   문의
BD9V101MUF-LB 16V to 60V, 1A 1ch 2.1MHz Synchronous Buck Converter Integrated FET VQFN24FV4040   구입
BD70522GUL Nano Energy™ - Ultra Low Iq Buck Converter For Low Power Applications VCSP50L1C   구입
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   구입
BD9S400MUF-C 2.7V to 5.5V Input, 4A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   구입
New Products:
 
 
기술 정보
Reference Circuits and Bomlist

Reference Circuits and Bomlist

Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.