Downloading...
 
product-image
 

2.9V~5.5V 입력, 5A MOSFET 내장 1ch 동기정류 강압 DC/DC 컨버터 - BD91364BMUU

로옴의 고효율 강압 스위칭 레귤레이터 BD91364BMUU는 2.9V~5.5V의 전원 라인에서 0.8V~3.3V 등의 저전압을 생성하는 강압 컨버터입니다. PFM / PWM 자동 전환을 통해 모든 부하 영역에서 고효율을 실현합니다. 또한, 온 타임 제어 방식을 채용하여, 부하 급변 시의 고속 과도 응답을 실현합니다.

* 본 제품은 STANDARD GRADE 제품입니다. 이 제품은 차재 기기의 사용을 권장하지 않습니다.
형명
상태
패키지
포장 수량
최소 포장 단위
포장 사양
RoHS
BD91364BMUU-ZE2 공급중 VQFN20U4040M 2500 2500 Taping Yes
 
사양 :
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 2.9
Vin1(Max.)[V] 5.5
Vout1(Min.)[V] 0.8
Vout1(Max.)[V] 4.4
Iout1(Max.)[A] 5.0
SW frequency(Max.)[MHz] 1.7
Light Load mode Yes
EN Yes
PGOOD Yes
Operating Temperature (Min.)[°C] -40
Operating Temperature (Max.)[°C] 105
특징 :
    • Fast transient response with On-time control system.
    • High efficiency for all load range with synchronous
      rectifier (Nch/Nch FET) and adaptive PFM/PWM system.
    • Adjustable Soft-start function.
    • Thermal and UVLO protection.
    • Short-circuit current protection with timer latch.
    • Shutdown function.
 
 
관련 상품
관련 신제품 / 갱신 제품파워 매니지먼트
형명 제품 이름 패키지 Datasheet 유통 재고
BD9S300MUF-C 2.7V to 5.5V Input, 3A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   문의
BD9E104FJ 7.0 V to 26.0 V Input, 1 A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   문의
BD9V101MUF-LB 16V to 60V, 1A 1ch 2.1MHz Synchronous Buck Converter Integrated FET VQFN24FV4040   구입
BD70522GUL Nano Energy™ - Ultra Low Iq Buck Converter For Low Power Applications VCSP50L1C   구입
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   구입
BD9S200MUF-C 2.7V to 5.5V Input, 2A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   구입
New Products:
 
 
기술 정보
Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.